2022 III 14 1030 J-762 (E)

MATHEMATICS & STATISTICS (40) (ARTS & SCIENCE)

Time: 3 Hrs.

(7 Pages)

Max. Marks: 80

General instructions:

The question paper is divided into FOUR sections.

- (1) Section A: Q. I contains Eight multiple choice type of questions, each carrying Two marks.
 - Q. 2 contains Four very short answer type questions, each carrying one mark.
- (2) Section B: Q. 3 to Q. 14 contain Twelve short answer type questions, each carrying Two marks. (Attempt any Eight)
- (3) Section C: Q. 15 to Q. 26 contain Twelve short answer type questions, each carrying Three marks. (Attempt any Eight)
- (4) Section D: Q. 27 to Q. 34 contain Eight long answer type questions, each carrying Four marks. (Attempt any Five)
- (5) Use of log table is allowed. Use of calculator is not allowed.
- (6) Figures to the right indicate full marks.
- (7) Use of graph paper is <u>not</u> necessary. Only rough sketch of graph is expected.
- (9) Start answer to each section on a new page.

Q. 1. Select and write the correct answer for the following

multiple choice type of questions:

- The negation of $p \wedge (q \rightarrow r)$ is (i)
 - (a) $-p \wedge (-q \rightarrow -r)$ (b) $p \vee (-q \vee r)$

 - (c) $-p \wedge (-q \rightarrow r)$ (d) $p \rightarrow (q \wedge -r)$ (2)
- In $\triangle ABC$ if $c^2 + a^2 b^2 = ac$, then $\angle B = \underline{\hspace{1cm}}$.
 - (a) $\frac{\pi}{4}$

(b) $\frac{\pi}{3}$

(c) $\frac{\pi}{2}$

(d) $\frac{\pi}{4}$

- (2)
- (iii) Equation of line passing through the points (0, 0, 0) and (2, 1, -3) is _____.
 - (a) $\frac{x}{2} = \frac{y}{1} = \frac{z}{2}$
- (b) $\frac{x}{2} = \frac{y}{-1} = \frac{z}{-2}$
- (c) $\frac{x}{1} = \frac{y}{2} = \frac{z}{2}$
- (d) $\frac{x}{3} = \frac{y}{1} = \frac{z}{2}$

(2)

- (iv) The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is _____.
 - (a) 0

(b) -1

(c) 1

(d) 3

(2)

- (v) If $f(x) = x^5 + 2x 3$, then $(f^{-1})^1(-3) =$ ____.
 - (a) 0

(b) -3

(c) $-\frac{1}{2}$

(d) $\frac{1}{2}$

(2)

(vi) The maximum value o	f the function $f(x) = \frac{\log x}{x}$ is	•
(a) <i>e</i>	(b) $\frac{1}{e}$	
(c) e^2	(d) $\frac{1}{e^2}$	(2)
(vii) If $\int \frac{dx}{4x^2 - 1} = A \log \left(\frac{1}{4x^2 - 1} \right)$	$\frac{2x-1}{2x+1} + c, \text{ then A} = \underline{\qquad}.$	
(a) l	(b) $\frac{1}{2}$	
(c) $\frac{1}{3}$	(d) $\frac{1}{4}$	(2)
(viii) If the p.m.f. of a r.v.	Xis	
$P(x) = \frac{c}{x^3}$, for $x =$	= 1, 2, 3	
= 0 , oth	nerwise.	
then $E(X) = $		
(a) $\frac{216}{251}$	(b) $\frac{294}{251}$	
(c) $\frac{297}{294}$	(d) $\frac{294}{297}$	(2)
Q. 2. Answer the following questions:		[4]
(i) Find the principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$.		(1)
(ii) Write the separat	e equations of lines represe	nted by the
equation $5x^2 - 9y^2 = 0$		(1)
(iii) If $f'(x) = x^{-1}$, then find $f(x)$		(1)
(iv) Write the degree	of the differential equation	
$(y''')^2 + 3(y'') + 3xy' + 5y = 0$		(1)
0 7 6 2	Page 3	P.T.O

Attempt any EIGHT of the following questions:

1161

O. 3. Using truth table verify that:

$$(p \wedge q) \vee {}^{\sim} q \equiv p \vee {}^{\sim} q \tag{2}$$

- Q. 4. Find the cofactors of the elements of the matrix $\begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}$ (2)
- Q. 5. Find the principal solutions of $\cot \theta = 0$ (2)
- Q. 6. Find the value of k, if 2x + y = 0 is one of the lines represented by $3x^2 + kxy + 2y^2 = 0$ (2)
- Q. 7. Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5. (2)
- Q. 8. Find the cartesian co-ordinates of the point whose polar

co-ordinates are
$$\left(\frac{1}{2}, \frac{\pi}{3}\right)$$
. (2)

- Q. 9. Find the equation of tangent to the curve $y = 2x^3 x^2 + 2$ at $\left(\frac{1}{2}, 2\right)$.
- **Q. 10.** Evaluate: $\int_{0}^{\frac{\pi}{4}} \sec^4 x \, dx$ (2)
- Q. 11. Solve the differential equation $y \frac{dy}{dx} + x = 0$ (2)
- Q. 12. Show that function $f(x) = \tan x$ is increasing in $\left(0, \frac{\pi}{2}\right)$. (2)

- Q. 13. Form the differential equation of all lines which makes intercept 3 on x-axis. (2)
- **Q. 14.** If $X \sim B(n, p)$ and E(X) = 6 and Var(X) = 4.2, then find n and p. (2)

SECTION-C

Attempt any EIGHT of the following questions:

1241

- Q. 15. If $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$, then find the value of x. (3)
- Q. 16. If angle between the lines represented by $ax^2 + 2hxy + by^2 = 0$ is equal to the angle between the lines represented by $2x^2 5xy + 3y^2 = 0$, then show that $100(h^2 ab) = (a + b)^2$. (3)
- Q. 17. Find the distance between the parallel lines $\frac{x}{2} = \frac{y}{-1} = \frac{z}{2}$ and

$$\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z-1}{2} \tag{3}$$

- Q. 18. If A (5, 1, p), B(1, q, p) and C(1, -2, 3) are vertices of a triangle and $G\left(r, \frac{-4}{3}, \frac{1}{3}\right)$ is its centroid, then find the values of p, q, r by vector method. (3)
- Q. 19. If $A(\overline{a})$ and $B(\overline{b})$ be any two points in the space and $R(\overline{r})$ be a point on the line segment AB dividing it internally in the ratio

$$m: n \text{ then prove that } \overline{r} = \frac{m\overline{b} + n\overline{a}}{m+n}.$$
 (3)

Q. 20. Find the vector equation of the plane passing through the point A(-1, 2, -5) and parallel to the vectors $4\hat{i} - \hat{j} + 3\hat{k}$ and $\hat{i} + \hat{j} - \hat{k}$. (3)

Q. 21. If
$$y = e^{m \tan^{-1} x}$$
, then show that $(1+x^2)\frac{d^2y}{dx^2} + (2x-m)\frac{dy}{dx} = 0$ (3)

Q. 22. Evaluate:
$$\int \frac{dx}{2 + \cos x - \sin x}$$
 (3)

Q. 23. Solve
$$x + y \frac{dy}{dx} = \sec(x^2 + y^2)$$
 (3)

- Q. 24. A wire of length 36 meters is bent to form a rectangle. Find its dimensions if the area of the rectangle is maximum. (3)
- Q. 25. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X. (3)
- Q. 26. If a fair coin is tossed 10 times. Find the probability of getting at most six heads.

SECTION-D

Attempt any FIVE of the following questions:

[20]

Q. 27. Without using truth table prove that

$$(p \wedge q) \vee (\sim p \wedge q) \vee (p \wedge \sim q) \equiv p \vee q \tag{4}$$

Q. 28. Solve the following system of equations by the method of inversion

$$x-y+z=4$$
, $2x+y-3z=0$, $x+y+z=2$ (4)

- Q. 29. Using vectors prove that the altitudes of a triangle are concurrent. (4)
- Q. 30. Solve the L. P. P. by graphical method,

Minimize
$$z = 8x + 10y$$

Subject to $2x + y \ge 7$,
 $2x + 3y \ge 15$,
 $y \ge 2$, $x \ge 0$ (4)

0 7 6 2

Q. 31. If x = f(t) and y = g(t) are differentiable functions of t so that y is differentiable function of x and $\frac{dx}{dt} \neq 0$, then prove that:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

Hence find
$$\frac{dy}{dx}$$
 if $x = \sin t$ and $y = \cos t$. (4)

Q. 32. If u and v are differentiable functions of x, then prove that :

$$\int uv \, dx = u \int v \, dx - \int \left[\frac{du}{dx} \int v \, dx \right] dx$$
Hence evaluate $\int \log x \, dx$ (4)

Q. 33. Find the area of region between parabolas $y^2 = 4ax$ and $x^2 = 4ay$. (4)

Q. 34. Show that :
$$\int_{0}^{\frac{\pi}{4}} \log (1 + \tan x) dx = \frac{\pi}{8} \log 2$$

$$(4)$$