Mathematics & Statistics

Academic Year: 2017-2018 Date & Time: 3rd March 2018, 11:00 am Duration: 3h

Question 1:

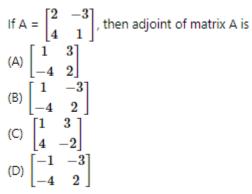
[12]

[2]

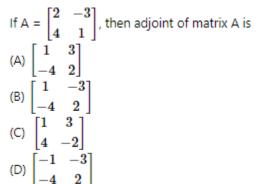
Marks: 80

Question 1: Select and write the appropriate answer from the given alternative in each of the following sub-question [6]

Question 1.1.1:



Solution:



Question 1.1.2:

[2]

The principal solutions of sec x = $\frac{2}{\sqrt{3}}$ are _____ $\frac{\pi}{3}, \frac{11\pi}{6}, \frac{\pi}{6}, \frac{11\pi}{6}, \frac{\pi}{4}, \frac{11\pi}{4}, \frac{\pi}{6}, \frac{11\pi}{4}$

Solution:

$$\sec x = \frac{2}{\sqrt{3}}$$
$$\cos x = \frac{\sqrt{3}}{2} = \frac{\cos \pi}{6} = \cos(2\pi - \pi 6)$$
$$\frac{\pi}{6}, \frac{11\pi}{6}$$

Question 1.1.3: The measure of the acute angle between the lines whose direction ratios are 3, 2, 6 and -2, 1, 2 is _____. [2]

Solution:

$$\begin{aligned} \cos \theta &= \left| \frac{3 \times -2 + 2 \times 1 + 6 \times 2}{\sqrt{(3)^2 + (2)^2 + (6)^2} \sqrt{(-2)^2 + 1^2 + 2^2}} \right| \\ &= \left| \frac{-6 + 2 + 12}{\sqrt{49} \sqrt{9}} \right| = \frac{8}{7 \times 3} = \frac{8}{21} \\ &\Rightarrow \theta = \cos^{-1} \left(\frac{8}{21} \right) \end{aligned}$$

Question 1.2: Attempt Any Three of the Following [8]

Question 1.2.1:

[4]

Write the negations of the following statements : 1) All students of this college live in the hostel

2) 6 is an even number or 36 is a perfect square.

Solution: 1) p: All students of this college live in the hostel.

Negation :

~ p: Some students of this college do not live in the hostel.

2) p: 6 is an even number. q: 36 is a perfect square.

Symbolic form : p v q

 $\therefore \sim (p \lor q) \equiv \sim p \land \sim q$

Negation :

6 is not an even number and 36 is not a perfect square.

Question 1.2.2: If a line makes angles α , β , γ with co-ordinate axes, prove that $\cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1 = 0$. [4]

Solution 1:

Consider
$$\cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1$$

$$= (2\cos^{2}\alpha - 1) + (2\cos^{2}\beta - 1) + (2\cos^{2}\gamma - 1)$$

$$= 2(\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma) - 3$$

$$= 2(1) - 3 \quad [\because \cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1]$$

$$= -1$$

$$\therefore \cos 2\alpha + \cos 2\beta + \cos 2\gamma = -1$$

 $\therefore \cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1 = 0$

Solution 2:

L.H.S:
$$\cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1$$

= $2\cos^2 \alpha - 1 + 2\cos^2 \beta - 1 + 2\cos^2 \gamma - 1 + 1$
= $2(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) - 2$
= $2 \times 1 - 2$
= $2 - 2$
= 0
= R.H.S

Question 1.2.3: Find the distance of the point (1, 2, -1) from the plane x - 2y + 4z - 10 = 0. [4]

Solution: The distance of the point $(x_1 y_1 z_1)$ to plane ax + by + cz + d = 0

$$D = \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$$

:. $(x_1y_1z_1) \equiv (1, 2, -1)$
 $a = 1, b = -2, c = 4$
 $\therefore D = \left| \frac{1 - 2(2) + 4(-1) - 10}{\sqrt{1 + 4 + 16}} \right| = \left| \frac{-17}{\sqrt{21}} \right| = \frac{17}{\sqrt{21}}$ units

Question 1.2.4: Find the vector equation of the lines which passes through the point with position vector $4\hat{i} - \hat{j} + 2\hat{k}$ and is in the direction of $-2\hat{i} + \hat{j} + \hat{k}$ [4]

Solution:

Let $ar{a}=4\hat{i}-\hat{j}+2\hat{k}$ $ar{b}=-\hat{2}i+\hat{j}+\hat{k}$

Equation of the line passing through point $A(ar{a})$ and having direction $ar{b}$ is

$$ar{r} = ar{a} + \lambda ar{b}$$
 $ar{r} = \left(4 \hat{i} - \hat{j} + 2 \hat{k}
ight) + \lambda \left(-2 \hat{i} + \hat{j} + \hat{k}
ight)$

Question 1.2.5: if $a = 3\hat{i} - 2\hat{j} + 7\hat{k}$, $b = 5\hat{i} + \hat{j} - 2\hat{k}$ and $c = \hat{i} + \hat{j} - \hat{k}$ then find $a.(b \times c)$ [2]

Solution:

$$\bar{a}(\bar{b} \times \bar{c}) = [\bar{a}\bar{b}\bar{c}] = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
$$\therefore \bar{a}(\bar{b} \times \bar{c}) = \begin{vmatrix} 3 & -2 & 7 \\ 5 & 1 & -2 \\ 1 & 1 & -1 \end{vmatrix}$$
$$= 3(-1+2) + 2(-5+2) + 7(5-1)$$
$$= 3-6+28$$
$$= 25$$

Question 2:

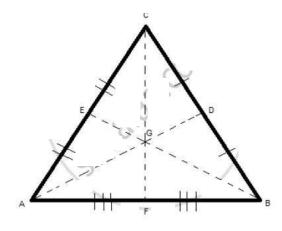
[14]

Question 2: Attempt Any Two of the Following

[6]

Question 2.1.1: By vector method prove that the medians of a triangle are concurrent. [3]

Solution:



Let A, B and C be the vertices of a triangle. Let D, E and F be the midpoints of the sides BC, AC and AB respectively.

Let $\overline{GA} = \overline{a}, \overline{GB} = \overline{b}, \overline{GC} = \overline{c}, \overline{GD} = \overline{d}, \overline{GE} = \overline{e} \text{ and } \overline{GF} = \overline{f}$ be position vectors of points A, B, C, D, E and F respectively. Therefore, by midpoint formula,

$$\begin{split} \bar{d} &= \frac{\bar{b} + \bar{c}}{2}, \bar{e} = \frac{\bar{a} + \bar{c}}{2} \text{ and } \bar{f} = \frac{\bar{a} + \bar{b}}{2} \\ 2\bar{d} &= \bar{b} + \bar{c}, 2\bar{e} = \bar{a} + \bar{c} \text{ and } 2\bar{f} = \bar{a} + \bar{b} \\ 2\bar{d} &= \bar{a} + \bar{b} + \bar{c}, 2\bar{e} + \bar{b} = \bar{a} + \bar{b} + \bar{c} \text{ and } 2\bar{f} + \bar{c} = \bar{a} + \bar{b} + \bar{c} \\ 2\bar{d} &+ \bar{a} = \bar{a} + \bar{b} + \bar{c}, 2\bar{e} + \bar{b} = \bar{a} + \bar{b} + \bar{c} \text{ and } 2\bar{f} + \bar{c} = \bar{a} + \bar{b} + \bar{c} \\ \frac{2\bar{d} + \bar{a}}{3} &= \frac{2\bar{e} + \bar{b}}{3} = \frac{2\bar{f} + \bar{c}}{3} = \frac{\bar{a} + \bar{b} + \bar{c}}{3} \\ Let \quad \bar{g} &= \frac{\bar{a} + \bar{b} + \bar{c}}{3} \\ Let \quad \bar{g} &= \frac{\bar{a} + \bar{b} + \bar{c}}{3} \\ \therefore \text{ We have } \quad \bar{g} &= \frac{\bar{a} + \bar{b} + \bar{c}}{3} = \frac{(2)\bar{d} + (1)\bar{a}}{3} = \frac{(2)\bar{e} + (1)\bar{b}}{3} = \frac{(2)\bar{f} + (1)\bar{c}}{3} \end{split}$$

If G is the point whose position vector is \overline{g} , then from the above equation it is clear that the point G lies on the medians AD, BE, CF and it divides each of the medians AD, BE, CF internally in the ratio 2:1. Therefore, three medians are concurrent.

Question 2.1.2: Using the truth table, prove the following logical equivalence: $p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$ [3]

Solution:

1	2	3	4	5	6	7	8
			А			В	
р	q	$p \leftrightarrow q$	p∧q	~p	~q	~p ^ ~q	AVB
Т	Т	т	Т	F	F	F	т
Т	F	F	F	F	Т	F	F
F	Т	F	F	Т	F	F	F
F	F	Т	F	Т	Т	Т	Т

By column number 3 and 8

 $p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$

Question 2.1.3: If the origin is the centroid of the triangle whose vertices are A(2, p, -3), B(q, -2, 5) and C(-5, 1, r), then find the values of p, q, r. [3]

Solution:

Let $\bar{a}, \bar{b}, \bar{c}$ be the position vectors of $\triangle ABC$ whose vertices are A(2, p, -3), B(q, -2, 5) and C(-5, 1, r)

 $\therefore \bar{a} = 2\hat{i} + p\bar{j} - 3\bar{k}, \bar{b} = q\bar{i} - 2\bar{j} + 5\bar{k}, \bar{c} = -5\bar{i} + \bar{j} + r\bar{k}$

Given that origin O is the centroid of riangle ABC

$$\therefore \overline{O} = \frac{\overline{a} + \overline{b} + \overline{c}}{3}$$

$$\therefore \overline{a} + \overline{b} + \overline{c} = \overline{O}$$

$$2\hat{i} + p\hat{j} - 3\hat{k} + \hat{j} - 2\hat{j} + 5\hat{k} - 5\hat{i} + \hat{j} + r\hat{k} = \overline{O}$$

$$\Rightarrow (2 + q - 5)\hat{i} + (p - 2 + 1)\hat{j} + (-3 + 5 + r)\hat{k} = 0\hat{i} + 0\hat{j} + 0\hat{k}$$

by equality of vectors

$$2 + q - 5 = 0 \Rightarrow q = 3$$

$$p - 2 + 1 = 0 \Rightarrow p = 1$$

$$-3 + 5 + r = 0 \Rightarrow r = -2$$

$$\therefore p = 1, q = 3 \text{ and } r = -2$$

Ouestion 2:

Question 2:

[14]

[6]

Question 2.2 | Attempt Any Two of Following

Question 2.2.1: Show that every homogeneous equation of degree two in x and y, i.e., $ax^{2} + 2hxy + by^{2} = 0$ represents a pair of lines passing through origin if $h^{2}-ab\geq 0$. [3]

Solution 1: Consider a homogeneous equation of the second degree in x and y,

 $ax^2 + 2hxy + by^2 = 0.....(1)$

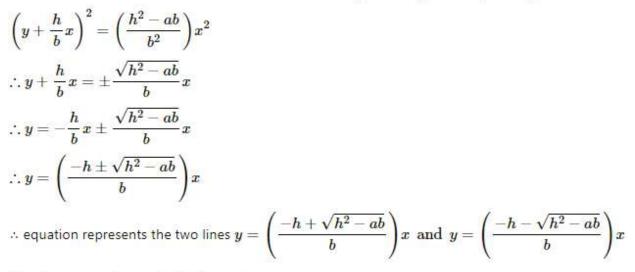
Case I: If b = 0 (i.e., $a \neq 0$, $h \neq 0$), then the equation (1) reduce to $ax^2 + 2hxy = 0$ i.e., x(ax + 2hy) = 0

Case II: If a = 0 and b = 0 (i.e. $h \neq 0$), then the equation (1) reduces to 2hxy = 0, i.e., xy = 0 which represents the coordinate axes and they pass through the origin.

Case III: If b \neq 0, then the equation (1), on dividing it by b, becomes $\frac{a}{b}x^2 + \frac{2hxy}{b} + y^2 = 0$

$$\therefore y^2 + \frac{2h}{b}xy = -\frac{a}{b}x^2$$

On completing the square and adjusting, we get $y^2 + rac{2h}{b}xy + rac{h^2x^2}{b^2} = rac{h^2x^2}{b^2} - rac{a}{b}x^2$



The above equation are in the form of y = mx

These lines passing through the origin.

Thus the homogeneous equation (1) represents a pair of lines through the origin, if h^{2} - ab ≥ 0 .

Solution 2: Consider a homogeneous equation of degree two in x and y

 $ax^2 + 2hxy + by^2 = 0......(i)$

In this equation at least one of the coefficients a, b or h is non zero. We consider two cases.

Case I: If b = 0 then the equation

 $ax^2 + 2hxy = 0$

x(ax+2hy)=0

This is the joint equation of lines x = 0 and (ax+2hy)=0 These lines pass through the origin.

Case II: If $b \neq 0$

Multiplying both the sides of equation (i) by b, we get

$$abx^2 + 2hbxy + b^2y^2 = 0$$

 $2hbxy + b^2y^2 = -abx^2$

To make LHS a complete square, we add h^2x^2 on both the sides.

$$\begin{aligned} b^{2}y^{2} + 2hbxy + h^{2}y^{2} &= -abx^{2} + h^{2}x^{2} \\ (by + hx)^{2} &= (h^{2} - ab)x^{2} \\ (by + hx)^{2} &= \left[\left(\sqrt{h^{2} - ab} \right)x \right]^{2} \\ (by + hx)^{2} - \left[\left(\sqrt{h^{2} - ab} \right)x \right]^{2} &= 0 \\ \left[(by + hx) + \left[\left(\sqrt{h^{2} - ab} \right)x \right] \right] \left[(by + hx) - \left[\left(\sqrt{h^{2} - ab} \right)x \right] \right] &= 0 \end{aligned}$$

It is the joint equation of two lines

$$(by+hx)+\Big[\Big(\sqrt{h^2-ab}\Big)x=0 ext{ and } (by+hx)-\Big[\Big(\sqrt{h^2-ab}\Big)x=0 \ \Big(h+\sqrt{h^2-ab}\Big)x+by=0 ext{ and } \Big(h-\sqrt{h^2-ab}\Big)x+by=0$$

These lines pass through the origin when h²-ab>0

From the above two cases we conclude that the equation $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines passing through the origin.

Question 2.2.2:

[4] In riangle ABC prove that $aniggl(rac{C-A}{2}iggr) = iggl(rac{c-a}{c+a}iggr)\cotrac{B}{2}$

Solution:

In riangle ABC, by sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = K$$

$$\therefore a = k \sin A, b = k \sin B, c = k \sin C$$

Consider,

$$\frac{c-a}{c+a} = \frac{k \sin C - k \sin A}{k \sin C + k \sin A}$$

$$= \frac{\sin C - \sin A}{\sin C + \sin A}$$

$$= \frac{2 \cos(\frac{C+A}{2}) \sin(\frac{C-A}{2})}{2 \sin(\frac{C+A}{2}) \cos(\frac{C-A}{2})}$$

$$= \cot\left(\frac{C+A}{2}\right) \tan\left(\frac{C-A}{2}\right)$$

$$= \tan \frac{B}{2} \tan\left(\frac{C-A}{2}\right)$$

$$\therefore \tan\left(\frac{C-A}{2}\right) = \left(\frac{C-a}{C+a}\right) \cot \frac{B}{2}$$

Hence proved

Question 2.2.3:

[4]

Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ using elementary row transformations.

Solution:

$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

= 1[3] - 2[-1] - 2[2]
= 3 + 2 - 4 = 1 \neq 0 \Rightarrow A^{-1} exist

We know

 $AA^{-1} = I$ $\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $R_2 \rightarrow R_2 + R_1$ $\begin{bmatrix} 1 & 2 & -2 \\ 0 & 5 & -2 \\ 0 & -2 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $R_2 \rightarrow R_2 + 2R_3$ $\begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ $R_1 \rightarrow R_1 - 2R_2$ and $R_3 \rightarrow R_3 + 2R_2$ $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} -1 & -2 & -4 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$ $R_1 \rightarrow R_1 + 2R_3$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$ $\therefore A^{-1} = \begin{vmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \end{vmatrix}$

Question 3:

[14]

Question 3.1: Attempt Any Two of the Following

[6]

Question 3.1.1: Find the joint equation of the pair of lines passing through the origin which are perpendicular respectively to the lines represented by $5x^2 + 2xy - 3y^2 = 0$. [3]

Solution 1:

Comparing the equation $5x^2 + 2xy - 3y^2 = 0$, we get,

$$a = 5, 2h = +2, b = -3$$

Let ${
m m_1}$ and ${
m m_2}$ be the slopes of the lines represented by $5x^2+2xy\!-\!3y^2=0$

$$m_1 + m_2 = -\frac{2h}{b} = -\frac{2}{-3} = \frac{2}{3} \qquad \dots \dots (1)$$
$$m_1 m_2 = \frac{a}{b} = \frac{5}{-3}$$

Now required lines are perpendicular to these lines

their slopes are
$$-rac{1}{m_1} \; ext{and} \; -rac{1}{m_2}$$

Since these lines are passing through the origin, their separate equations are

$$y = -\frac{1}{m_1}x \text{ and } y = -\frac{1}{m_2}x$$

$$\therefore m_1y = -x \text{ and } m_2y = -x$$

$$x + m_1y = 0 \text{ and } x + m_2y = 0$$

their combined equation is

$$(x + m_1y)(x + m_2y) = 0$$

$$x^2 + (m_1 + m_2)xy + m_1m_2y^2 = 0$$

$$x^2 + \frac{2}{3}xy + \frac{-5}{3}y^2 = 0$$

$$3x^2 + 2xy - 5y^2 = 0$$

Solution 2: Given homogeneous equation is

$$5x^{2} + 2xy - 3y^{2} = 0$$

Which is factor sable
 $5x^{2} + 5xy - 3xy - 3y^{2} = 0$

$$5x(x + y) - 3y(x + y) = 0$$

$$(x + y)(5x - 3y) = 0$$

 \therefore x + y = 0 and 5x - 3y = 0 are the two lines represented by the given equation

 \Rightarrow Their slopes are -1 and 5/3

Required two lines are respectively perpendicular to these lines.

 \therefore Slopes of required lines are 1 and 3/5 and the lines pass thought origin

 \therefore Their individual equations are

$$y = 1x \text{ and } y = -\frac{3}{5}x$$

i.e x - y = 0 and 3x + 5y = 0
 \therefore Their joint equation is
 $(x - y)(3x + 5y) = 0$
 $3x^2 - 3xy + 5xy - 5y^2 = 0$
 $3x^2 + 2xy - 5y^2 = 0$
Question 3.1.2: [3]
Find the angle between the lines $\frac{x-1}{4} = \frac{y-3}{1} = \frac{z}{8}$ and $\frac{x-2}{2} = \frac{y+1}{2} = \frac{z-4}{1}$
Solution:
Let \bar{a} and \bar{b} be the vectors in the direction of the lines $\frac{x-1}{4} = \frac{y-3}{1} = \frac{z}{8}$ and $\frac{x-2}{2} = \frac{y+1}{2} = \frac{z-4}{1}$ respectively.
 $\therefore \bar{a} = 4\hat{i} + \hat{j} + 8\hat{k}$ and $\bar{b} = 2\hat{i} + 2\hat{j} + \hat{k}$
 $\therefore \bar{a}.\bar{b} = 4 \times 2 + 1 \times 2 + 8 \times 1 = 8 + 2 + 8 = 18$
and
 $|\bar{a}| = \sqrt{16 + 1 + 64} = \sqrt{81} = 9$
 $\bar{b} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3$
Let 0 be the acute angle between the two given lines.
 $\therefore \cos \theta = |\frac{a.\bar{b}}{|a|.|\bar{b}|} = \frac{18}{9 \times 3} = \frac{2}{3}$
 $\theta = \cos^{-1}(\frac{2}{3})$

Question 3.1.3: Write converse, inverse and contrapositive of the following conditional statement : If an angle is a right angle then its measure is 90°. [3]

Solution: Converse: If the measure of an angle is 90° then it is a right angle

Inverse : If an angle is not a right angle then its measure is not 90°.

Contrapositive: If the measure of an angle is not 90° then it is not a right angle.

Question 3.2 | Attempt Any Two of the Following[8]Question 3.2.1:[4]

Prove that
$$\sin^{-1}\left(rac{3}{5}
ight)+\cos^{-1}\left(rac{12}{13}
ight)=\sin^{-1}\left(rac{56}{65}
ight)$$

Solution:

Let $\cos^{-1} \frac{12}{13} = x$ $\therefore \cos x = \frac{12}{13}$ $\therefore \sin x = \frac{5}{13}$ and let $\sin^{-1} \frac{3}{5} = y$ $\sin y = \frac{3}{5}$ $\therefore \cos y = \frac{4}{5}$ $\therefore using \sin (x + y) = \sin x \cos y + \cos x \sin y$ $= \frac{5}{13} \times \frac{4}{5} + \frac{12}{13} \times \frac{3}{5}$ $= \frac{20 + 36}{13 \times 5}$ $= \frac{56}{65}$ $\therefore x + y = \sin^{-1} \frac{56}{65}$ $\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$

Hence proved.

Question 3.2.2: Find the vector equation of the plane passing through the points A(1, 0, 1), B(1, -1, 1) and C(4, -3, 2). [4]

Solution: Let the p.v. of points A(1, 0, 1), B(1, -1, 1) and C(4, -3, 2) be

$$\vec{a} = \vec{i} + \vec{k}, \ \vec{b} = \vec{i} - \vec{j} + \vec{k} \text{ and } \vec{c} = 4\vec{i} - 3\vec{j} + 2\vec{k}$$
$$\vec{b} - \vec{a} = -\vec{j}, \ \vec{c} - \vec{a} = 3\vec{i} - 3\vec{j} + \vec{k}$$
$$(\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & -1 & 0 \\ 3 & -3 & 1 \end{vmatrix} = -\vec{i} + 3\vec{k}$$

Equation of plane through A, B, C in vector form is

$$egin{aligned} &(ar{r}-ar{a}).\left[ig(ar{b}-ar{a}ig) imes(ar{c}-ar{a}ig)
ight]=0\ &(ar{r}-ar{a}).\left(-ar{i}+3ar{k}
ight)=0\ &ar{r}.\left(-ar{i}+3ar{k}
ight)=ig(ar{i}+ar{k}ig).\left(-ar{i}+3ar{k}
ight)=-1+3=2\ &\thereforear{r}.ig(-ar{i}+3ar{k}ig)=2 \end{aligned}$$

Question 3.2.3:

[4]

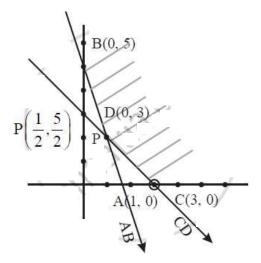
Solve the following LPP by graphical method:

Minimize Z = 7x + y subject to $5x + y \ge 5$, $x + y \ge 3$, $x \ge 0$, $y \ge 0$

Solution: First we draw the lines AB and CD whose equations are 5x + y = 5 and x + y = 3 respectively.

Line	In equation	Points on x	Points on	Sign	Feasible region
			у		
AB	5x + y = 5	A(1,0)	B(0,5)	≥	Non - origin side
					AB
CD	x + y = 3	C(3,0)	D(0,3)	N	Non - origin side
					of line CD

1 unit = 1 cm both axis



Common feasible region BPC

Points	Minimize $z = 7x + y$
B(0,5)	Z(B) = 7(0) + 5 = 5
$P\left(\frac{1}{2},\frac{5}{2}\right)$	$Z(P)=7 imesrac{1}{2}+rac{5}{2}=6$
C(3,0)	Z(C) = 7x(3) + 0 = 21

Z is minimum at x = 0, y = 5 and min (z) = 5

Question 4:

[12]

[2]

Question 4.1 | Select and write the appropriate answer from the given alternatives in each of the following sub-questions : [6]

Question 4.1.1:

Let the p. m. f. of a random variable X be __ P(x) = $\frac{3-x}{10}$ for x = -1,0,1,2 = 0 otherwise Then E(X) is _____. 1 2 0 -1

Solution: 0

x	-1	0	1	2	
P(x)	$\frac{4}{10}$	$\frac{3}{10}$	$\frac{2}{10}$	$\frac{1}{10}$	
x.P(x)	$\frac{-4}{10}$	0	$\frac{2}{10}$	$\frac{2}{10}$	

 $\sum x. P(x) = 0$

Question 4.1.2:

[2]

if
$$\int_0^k \frac{1}{2+8x^2} dx = \frac{\pi}{16}$$
 then the value of k is _____.
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{1}{5}$

Solution: ¹/₂

$$I = \int_{0}^{k} \frac{1}{2(1+(2x)^{2})} dx = \frac{\pi}{16}$$

$$\therefore \frac{1}{2} \times \frac{1}{2} [\tan^{-1}(2x)]_{0}^{k} = \frac{\pi}{16}$$

$$\tan^{-1} 2k - \tan^{-1} 0 = \frac{\pi}{4}$$

$$2k = 1$$

$$k = \frac{1}{2}$$

Question 4.1.3:

[2]

Integrating factor of linear differential equation $x \frac{dy}{dx} + 2y = x^2 \log x$ is ______ $\frac{1}{x^2}$ $\frac{1}{x}$ x x^2

Solution:

$$x^{2}$$

$$\frac{dy}{dx} + \frac{2y}{x} = x \log x$$

$$P = \frac{2}{x}$$

$$I. F = e^{\int \frac{2}{x} dx} = e^{2\log x} = x^{2}$$

Question 4.2: Attempt Any Three of The Following [6]

Question 4.2.1:

Evaluate
$$\int e^x \left[rac{\cos x - \sin x}{\sin^2 x}
ight] dx$$

Solution:

$$I = \int e^x \left[\frac{\cos x}{\sin^2 x} - \frac{\sin x}{\sin^2 x} \right] dx$$

=
$$\int e^x \left[\frac{\cot x \cdot \cos ecx}{f'(x)} - \cos ecx}{f(x)} \right]$$

:
$$\int e^x [f(x) + f'(x)] dx = e^x f(x) + C$$

$$\therefore I = -e^x \cdot \cos ecx + C$$

Question 4.2.2:

[2]

[2]

if $y = an^2 igl(\log x^3 igr)$, find $rac{dy}{dx}$

Solution 1:

 $y = \left[\tan(3\log x)\right]^2$

differentiate w.r.t. x both side

$$\therefore \frac{dy}{dx} = 2[\tan(3\log x)] \times \sec^2(3\log x). \frac{3}{x}$$
$$\therefore \frac{dy}{dx} = \frac{6}{x} \tan(\log x^3). \sec^2(\log x^3)$$

Solution 2:

Given
$$y = \tan^2(\log x^3)$$

We need to find $\frac{dy}{dx}$
Consider $y = \tan^2(\log x^3)$
 $\Rightarrow y = \tan^2(3\log x)$
 $\Rightarrow y = [\tan(3\log x)]^2$

Differentiate with respect to xx on both sides we get

$$\Rightarrow \frac{dy}{dx} = 2[\tan(3\log x)] \cdot \sec^2(3\log x) \cdot \frac{3}{x}$$
$$\Rightarrow \frac{dy}{dx} = \frac{6}{x} \cdot [\tan(3\log x)] \cdot \sec^2(3\log x)$$
$$\therefore \frac{dy}{dx} = \frac{6}{x} \cdot [\tan(\log x^3)] \cdot \sec^2(\log x^3)$$

Question 4.2.3:

[2]

Find the area of ellipse $rac{x^2}{1}+rac{y^2}{4}=1$

Solution:

Required area = 4 Area (OAPB)

$$= \int_{0}^{1} y dx$$

$$\therefore \frac{x^{2}}{1} + \frac{y^{2}}{4} = 1$$

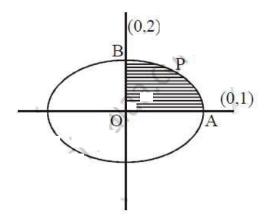
$$\therefore y = -2\sqrt{1 - x^{2}}$$

$$\therefore \text{Required area} = 4 \int_{0}^{1} 2\sqrt{1 - x^{2}} dx$$

$$= 8 \left[\frac{x}{2}\sqrt{1 - x^{2}} + \frac{1}{2}\sin^{-1}\left(\frac{x}{1}\right) \right]_{0}^{1}$$

$$= 8 \left[\left\{ 0 + \frac{1}{2}\sin^{1}(1) \right\} - 0 \right]$$

$$= 8 \times \frac{1}{2} \cdot \frac{\pi}{2} = 2\pi \text{ sq. units}$$



Question 4.2.4: Obtain the differential equation by eliminating the arbitrary constants from the following equation: [2]

$$y = c_1 e^{2x} + c_2 e^{-2x}$$

Solution:

$$y = c_1 e^{2x} + c_2 e^{-2x}$$

differentiate w.r.t. x.

 $\frac{dy}{dx} = 2c_1e^{2x} - 2c_2e^{-2x}$

Again diff. w.r.t. x.

$$\frac{d^2y}{dx^2} = 4c_1e^{2x} + 4c_2e^{-2x}$$

= $4(c_1e^{2x} + c_2e^{-2x})$
= $4y$
 $\therefore \frac{d^2y}{dx^2} - 4y = 0$

Question 4.2.5:

Given X ~ B (n, p) If n = 10 and p = 0.4, find E(X) and var (X).

Solution: Given, n = 10, p = 0.4q = 1 - p = 1 - 0.4 = 0.6Now, E(X) = $np = 10 \times 0.4 = 4$ Var(X) = $npq = 10 \times 0.4 \times 0.6 = 2.4$ [2]

Question 5:	[14]
Question 5.1: Attempt any TWO of the following	[6]
Question 5.1.1:	[3]

Evaluate
$$\int \frac{1}{3 + 2\sin x + \cos x} dx$$

Solution:

Let I =
$$\int \frac{1}{3+2\sin x + \cos x} dx$$

Put tan $\frac{x}{2} = t$ Then $dx = \frac{2}{1+t^2} dt$
 $\sin x = \frac{2t}{1+t^2}$ and $\cos x = \frac{1-t^2}{1+t^2}$
 $\therefore I = \int \frac{2dt/(1+t^2)}{3+2(\frac{2t}{1+t^2}) + (\frac{1-t^2}{1+t^2})}$
 $= 2\int \frac{dt/(1+t^2)}{\frac{3(1+t^2)+4t+(1-t^2)}{1+t^2}}$

$$= 2 \int \frac{dt}{2t^2 + 4t + 4} = \int \frac{dt}{(t+1)^2 + 1}$$
$$= \tan^{-1}(t+1) + c$$
$$= \tan^{-1}\left[\tan\left(\frac{x}{2}\right) + 1\right] + c$$

Question 5.1.2:

If
$$x = a \cos^3 t$$
, $y = a \sin^3 t$,
Show that $\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{1}{2}}$

[3]

Solution: We have $\frac{dy}{dx} = \frac{dy/dx}{dx/dt}$, $dx/dt \neq 0$...(1) Now $y = a \sin^3 t = a(\sin t)^3 \Rightarrow \sin t = \left(\frac{y}{a}\right)^{\frac{1}{3}}$ $\therefore \frac{dy}{dx} = a \frac{d}{dt} (\sin t)^3 = a \cdot 3(\sin t)^2 \frac{d}{dt} (\sin t)$ $= 3a \sin^2 t \cos t$... (2) Also, $x = a \cos^3 t = a(\cos t)^3 \Rightarrow \cos t = \left(\frac{x}{a}\right)^{\frac{1}{3}}$ $\therefore \frac{dx}{dt} = a \cdot 3 \cos^2 t \frac{d}{dt} (\cos t)$ $= 3a \cos^2 t (-\sin t)$ $= -3a \cos^2 t \sin t$3 From (1), (2) and (3),

$$\frac{dy}{dx} = \frac{3a\sin^2 t \cos t}{-3a\cos^2 t \sin t} = -\frac{\sin t}{\cos t} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$$

Question 5.1.3:

Examine the continuity of the function: $f(x) = \frac{\log 100 + \log(0.01 + x)}{3x}, \text{ for } x \neq 0 = \frac{100}{3} \text{ for } x = 0; \text{ at } x = 0.$

Solution:

for
$$x \neq 0, f(x) = rac{\log 100 + \log (0.01 + x)}{3x} = rac{\log (1 + 100x)}{3x}$$

For continuity at x = 0, $f(0) = f(0^{-}) = f(0^{+})$

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\log(1 + 100x)}{3x} = \lim_{x \to 0^-} \frac{1}{(1 + 100x)(-3)} (-100) = \frac{100}{3}$$

$$\therefore \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\log(1 + 100x)}{3x} = \lim_{x \to 0^+} \frac{1}{(1 + 100x)3} (100) = \frac{100}{3}$$

As
$$f(0) = f(0^{-}) = f(0^{+}) = \frac{100}{3}$$
, the function is continuous at x= 0.

Question 5.2: Attempt any TWO of the following

[8]

Question 5.2.1: Examine the maxima and minima of the function $f(x) = 2x^3 - 21x^2 + 36x - 20$. Also, find the maximum and minimum values of f(x). [4]

Solution 1:

 $egin{aligned} f(x) &= 2x^3 - 21x^2 + 36x - 20 \ f'(x) &= 6x^2 - 42x + 36 \end{aligned}$

For finding critical points, we take f'(x)=0

$$\therefore 6x^2 - 42x + 36 = 0$$

$$x^2 - 7x + 6 = 0$$

(x-6)(x-1)=0

For finding the maxima and minima, find f"(x)

f'(x)=12x-42

For x=6

f"(6)=30>0

Minima

For x=1

f"(1)=-30<0

Maxima

Maximum values of f(x) for x=1

f(1)=-3

Minimum values of f(x) for x=6

f(6)=-128

 \therefore The maximum values of the function is -3 and the minimum value of the function is -128.

Solution 2: $f(x) = 2x^3 - 21x^2 + 36x - 20$ $\therefore f(x) = 2(3x^2) - 21(2x) + 36(1) - 1$

$$= 6x^2 - 42x + 36 = 6(x^2 - 7x + 6)$$

= 6(x - 1)(x - 6)

f has a maxima/minima if f'(x) = 0

i.e if 6(x - 1)(x-6) = 0

i.e if
$$x - 1 = 0$$
 or $x - 6 = 0$
i.e if $x = 0$ or $x = 6$
Now $f''(x) = 6(2x) - 42(1) = 12x - 42$
 $\therefore f''(1) = 12(1) - 42 = -30$
 $\therefore f''(1) < 0$

Hence, f has a maximum at x = 1, by the second derivative test.

Hence, f has a minimum at x = 6, by the second derivative test.

Now, the maximum value of f at 1,

$$f(1) = 2(1^3) - 21(1^2) + 36(1) - 20$$

= 2-21+36-20 = -3

and minimum value of f at x = 6

$$f(6) = 2(6^3) - 21(6^2) + 36(1) - 20$$

= 432 - 756 + 216 - 20 = -128

Question 5.2.2:

[4]

Prove that $\int rac{1}{a^2-x^2} dx = rac{1}{2 \mathrm{a}} \mathrm{log} \Big| rac{a+x}{a-x} \Big| + c$

Solution:

$$\begin{split} &\int \frac{1}{a^2 - x^2} dx = \int \frac{1}{(a - x)(a + x)} dx \\ &= \frac{1}{2a} \int \frac{(a - x) + (a + x)}{(a - x)(a + x)} dx \\ &= \frac{1}{2a} \int \left(\frac{1}{a + x} + \frac{1}{a - x}\right) dx \\ &= \frac{1}{2a} \left[\int \frac{1}{a + x} dx + \int \frac{1}{a - x} dx \right] \\ &= \frac{1}{2a} \left[\log|a + x| + \frac{\log|a - x|}{-1} \right] + C = \frac{1}{2a} [\log|a + x| - \log|a - x|] + C \\ &= \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C \end{split}$$

Question 5.2.3:

Solution:

$$\int_{-a}^{a}f(x)dx=\int_{-a}^{0}f(x)dx+\int_{0}^{a}f(x)dx$$

 $\int_{a}^{a}f(x)dx=I+\int_{0}^{a}f(x)dx$
 $NowI=\int_{-a}^{0}f(x)dx$

Put x = -t

dx = - dt When x = -a, t = a and when x = 0, t = 0

$$\begin{split} I &= \int_{a}^{0} f(-t)(-dt) \\ &= -\int_{a}^{0} f(-t)dt \\ &= \int_{0}^{a} f(-t)dt....\left[\because \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \right] \\ &= \int_{0}^{a} f(-x)dt.....\left[\because \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(t)dx \right] \end{split}$$

Equation (i) becomes

$$egin{split} &\int_{-a}^{a}f(x)dx=\int_{0}^{a}f(-x)dx+\int_{0}^{a}f(x)dx\ &=\int_{0}^{a}[f(-x)+f(x)]dx......(ii) \end{split}$$

case 1: If f(x) is an even function, then f(-x) = f(x). Thus, equation (ii) becomes

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} [f(x) + f(x)] dx = 2 \int_{0}^{a} f(x) dx$$

Case 2: If f(x) is an odd function, then f(-x) = -f(x). Thus, equation (ii) becomes

$$\int_{-a}^a f(x)dx = \int_0^a [-f(x)+f(x)]dx = 0$$

Solution 2: We shall use the following results :

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \qquad(1)$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt \qquad \dots (2)$$

If c is between a and b, then

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \qquad \dots (3)$$

Since 0 lies between -a and a, by (3), we have,

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) = I_1 + I_2 \qquad \dots \text{(Say)}$$

In
$$I_1$$
, put $x = -t$. Then $dx = -dt$
When $x = -a, -t = -a$
When $x = 0, -t = 0$
 $\therefore \int_{-a}^{0} f(x) dx = \int_{a}^{u} f(-t)(-dt) = \int_{a}^{0} f(-t) dt$
 $= \int_{0}^{a} f(-t) dt$
 $\dots [By(1)]$
 $= \int_{0}^{a} f(x) dx = \int_{0}^{a} f(-x) dx + \int_{0}^{a} f(x) dx$

(i) If f is an even function, then f(-x) = f(x) : in this case,

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

(ii) If f is an odd function, then f(-x) = -f(x). in this case,

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} -f(x) dx + \int_{0}^{a} f(x) dx = -\int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx = 0.$$

Question 5.2.3:

[4]

Solution:

$$\int_{-a}^{a}f(x)dx=\int_{-a}^{0}f(x)dx+\int_{0}^{a}f(x)dx$$

 $\int_{a}^{a}f(x)dx=I+\int_{0}^{a}f(x)dx$

$$NowI = \int_{-a}^{0} f(x)dx$$

Put x=-t

dx = - dt When x = -a, t = a and when x = 0, t = 0

$$\begin{split} &I = \int_{a}^{0} f(-t)(-dt) \\ &= -\int_{a}^{0} f(-t)dt \\ &= \int_{0}^{a} f(-t)dt....\left[\because \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx\right] \\ &= \int_{0}^{a} f(-x)dt.....\left[\because \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(t)dx\right] \end{split}$$

Equation (i) becomes

$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} f(-x)dx + \int_{0}^{a} f(x)dx$$
$$= \int_{0}^{a} [f(-x) + f(x)]dx.....(ii)$$

case 1: If f(x) is an even function, then f(-x) = f(x).

Thus, equation (ii) becomes

$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} [f(x) + f(x)]dx = 2\int_{0}^{a} f(x)dx$$

Case 2: If f(x) is an odd function, then f(-x) = -f(x).

Thus, equation (ii) becomes

$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} [-f(x) + f(x)]dx = 0$$

Solution 2: We shall use the following results :

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \qquad \dots (1)$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt \qquad \dots (2)$$

If c is between a and b, then

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \qquad \dots (3)$$

Since 0 lies between -a and a, by (3), we have,

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x) = I_{1} + I_{2} \qquad \dots (Say)$$
In I_{1} , put $x = -t$. Then $dx = -dt$
When $x = -a, -t = -a$
When $x = 0, -t = 0$
 $\therefore f = 0$
 $\therefore \int_{-a}^{0} f(x)dx = \int_{a}^{0} f(-t)(-dt) = \int_{a}^{0} f(-t)dt$
 $= \int_{0}^{a} f(-t)dt \qquad \dots [By(1)]$
 $= \int_{0}^{a} f(x)dx = \int_{0}^{a} f(-x)dx + \int_{0}^{a} f(x)dx$
(i) If f is an even function, then $f(-x) = f(x)$ \therefore in this case,
 $\int_{-a}^{a} f(x)dx = \int_{0}^{a} f(x)dx + \int_{0}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$
(ii) If f is an odd function, then $f(-x) = -f(x)$ \therefore in this case,

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} -f(x) dx + \int_{0}^{a} f(x) dx = -\int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx = 0.$$

Question 6:

[14]

Question 6.1 | Attempt any TWO of the following [6]

Question 6.1.1:

if
$$f(x) = \frac{x^2 - 9}{x - 3} + \alpha$$
 for x> 3
=5, for x = 3
 $= 2x^2 + 3x + \beta$, for x < 3

is continuous at x = 3, find α and β .

Solution: : f is continuous at x = 3

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3) \quad \dots \dots (1)$$

$$\text{Now} \lim_{x \to 3^{+}} f(x) = \lim_{x \to 0} \left(\frac{x^2 - 9}{x - 3} + \alpha \right) = \lim_{x \to 3} \left[\frac{(x - 3)(x + 3)}{x - 3} + \alpha \right]$$

$$= \lim_{x \to 0} \left[(x + 3) + \alpha \right] = (3 + 3) + \alpha = \alpha + 6$$

and

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} (2x^{2} + 3x + \beta) = 2(3)^{2} + 3(3) + \beta = 18 + 9 + \beta = 27 + \beta$$

Also f(3) = 5 ...(given)
 \therefore From (1) we get $\alpha + 6 = 27 + \beta = 5^{\circ}$
 $\therefore \alpha + 6 = 5$ and $27 + \beta = 5$
 $\therefore \alpha = 5 - 6 = -1$ and $\beta = 5 - 27 = -22$
 $\Rightarrow \therefore \alpha = -1$ and $\beta = -22$

Question 6.1.2:

[3]

Find
$$rac{dy}{dx}$$
 if $y= an^{-1}iggl(rac{5x+1}{3-x-6x^2}iggr)$

Solution:

Let
$$y = \tan^{-1}\left(\frac{5x+1}{3-x-6x^2}\right)$$

= $\tan^{-1}\left(\frac{5x+1}{1+2-x-6x^2}\right)$
= $\tan^{-1}\left(\frac{5x+1}{1-(3x+2)(2x-11)}\right)$
= $\tan^{-1}\left(\frac{(3x+2)+(2x-1)}{(1-(3x+2))(2x-1)}\right)$

$$y = an^{-1}(3x+2) + an^{-1}(2x-1)$$

Differentiate w.r.t. x

$$\therefore \frac{dy}{dx} = \frac{3}{1 + (3x + 2)^2} + \frac{2}{1 + (2x - 1)^2}$$

$$= \frac{3}{1 + 9x^2 + 12x + 4} + \frac{2}{1 + 4x^2 - 4x + 1}$$

$$= \frac{3}{9x^2 + 12x + 5} + \frac{1}{2x^2 - 2x + 1}$$

Question 6.1.3:

[3]

[4]

A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.

Solution:

Let X = no. of heads shows

n = 9 p =
$$\frac{1}{2}$$
 q = $\frac{1}{2}$
P(X = x) = ${}^{n}C_{x} p^{n} \cdot (q)^{n-x} \times = 0, 1....n$
P(X = 5) = ${}^{9}C_{5} \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{4}$
= $\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times \frac{1}{2^{9}}$
= $\frac{3024}{24} \times \frac{1}{2^{9}}$
= $\frac{126}{2^{9}}$
= 0.2460

Question 6.2 | Attempt any TWO of the following [8]

Question 6.2.1:

Verify Rolle's theorem for the following function: f (x) = $x^2 - 4x + 10$ on [0, 4]

Solution: Since f (x) is a polynomial,

(i) It is continuous on [0, 4]

(ii) It is differentiable on (0, 4)

(iii) f (0) = 10, f (4) = 16 - 16 + 10 = 10 ∴f(0) = f(4) = 10

Thus all the conditions on Rolle's theorem are satisfied

The derivative of f(x) should vanish for at least one point c in (0, 4). To obtain the value of c, we proceed as follows

 $f(x) = x^{2} - 4x + 10$ f'(x) = 2x - 4 = 2(x - 2)∴ f'(x) = 0 ⇒ (x - 2) = 0 ∴ x= 2 ∴ ∃c = 2 in (0,4) We know that 2 ∈ (0, 4)

Thus Rolle's theorem is verified.

Question 6.2.2:

[4]

Find the particular solution of the differential equation: $u(1 + \log x)\frac{dx}{dx} - x\log x = 0$

$$y(1 + \log x)\frac{dx}{dy} - x\log x =$$

when y = e² and x = e

Solution: Given equation is

$$y(1 + \log x)\frac{dx}{dy} - x\log x = 0$$

 $\therefore y(1 + \log x)\frac{dx}{dy} = x\log x$

$$\therefore y(1 + \log x)dx = x \log xdy$$

Separating the variables

$$\frac{1}{y}dy = \frac{1 + \log x}{x \log x} dx$$

Integrating, we have

$$\int \frac{1}{y} dy = \int \frac{1 + \log x}{x \log x} dx$$

 $\therefore \log \lvert y \rvert = \log \lvert x \log x \rvert + \log c$

 $\therefore \log|y| = \log|cx\log x|$

 \therefore y = cx log x is the general solution

Given x = e, y =
$$e^2$$

 $\therefore e^2$ = c.e.log e
 $\therefore e^2$ = c. e

∴y = ex.logx

Question 6.2.3: Find the variance and standard deviation of the random variable X whose probability distribution is given below : [4]

X	0	1	2	3
P(X = x)	1/8	3/8	3/8	1/8

Solution:

Solution.			
x_i	p_i	$p_i x_i$	$p_i x_i^2$
0	1/8	0	0
1	3/8	3/8	3/8
2	3/8	6/8	12/8
3	1/8	3/8	9/8
	Total	12/8	24/8 = 3

$$egin{aligned} E(X) &= \mu = \sum p_i x_i = rac{12}{8} = rac{3}{2} \ Var(X) &= \sum_{i=1}^n p_i x_i^2 - \mu^2 \ &= 3 - \left(rac{3}{2}
ight)^2 \ &= 3 - rac{9}{4} \end{aligned}$$

$$= \frac{3}{4}$$
$$\therefore Var(X) = \sigma^2 = \frac{3}{4}$$

Standard deivation of (X) = $\sigma_x = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$