

Subjective Matter: For Self Study

• 4.1 Introduction

- Energy is defined as capacity to do the work.
- Potential energy, kinetic, mechanical, electrical heat, chemical, work, etc. are the different forms of the energy. It can be converted one form to another form.
- Thermodynamics is a branch, in which study of energy and its changes, interms chemical and physical transformations.
- Macroscopic or easily measurable properties as P,
 V, T, E, H, S, G are studied in thermodynamics.
- It is not concerned with microscopic properties, internal structure, rate of the reaction, mechanism of the reaction etc.
- Thermodynamical properties depends on the initial and final states of the system.
- Thermodynamics gives information of feasibility of the chemical reaction, direction and upto which extent reaction is completed.
- Absolute value of macroscopic properties can not be determine.

● 4.2 Terms used in Thermodynamics

- System: It is part of universe under thermodynamic consideration. e.g. beaker.
- Surrounding: It is remaining part of the universe i.e. part of the universe other than system.
- > Universe: System + Surrounding.
- Types of systems :
- (i) Open system : A system which can exchange both energy and matter with surrounding. e.g. Hot tea in a cup.
- (ii) Closed system: A system which can exchange only energy and not matter with surrounding. e.g. Hot tea covered with dish on a cup.
- (iii) Isolated system : A system which can neither exchange energy nor matter with the surrounding. e.g. Isolated flask or thermoflask
- Properties of systems
- (i) Intensive property: The properties which are independent to amount or course of the system. e.g. Temperature, density, surface tension.

- Refractive index, M.P., B.P., specific heat, molar heat capacities, C_P, C_V, pH, dielectric constant, pressure etc.
- (ii) Extensive property: The property which depends on mass or amount of the system.] e.g. Mass, weight, volume, area, energy, enthalpy, heat capacity, free energy, etc.
- Ratio of two extensive property is an intensive property.

State function or Thermodynamic function

- The property which depends on initial and final state of system and independent to path by which it operated.
 - e.g. Pressure, volume, temperature, no. of moles, energy, enthalpy etc.
- Path functions: The property which depends on path of the system.
 e.g. Work and heat

• Thermodynamical equilibrium

- It is a state of equilibrium when the state functions of the system does not changes with time.
- Process: It is path of method by which system changes one state to another state.

1) Isothermal process

- ightharpoonup Temperature remains constant. $\Delta T = 0$.
- Heat can exchange with surrounding i.e. system absorbs or evolved heat to maintain the constant temperature.
- $\rightarrow \Delta U = 0 \text{ or } \Delta E = 0$
- System is not thermally isolated.

2) Adiabatic process

- \Rightarrow dq = 0, q = constant.
- $> .\Delta T \neq 0$
- In adiabatic expansion, temperature decreases i.e. endothermic process.
- In adiabatic compression, temperature increases of the system i.e. exothermic process.
- $\rightarrow \Delta U \neq 0$
- > System is thermally isolated.

3) Isochoric process

- ightharpoonup Volume of the system remains constant. $\Delta V = 0$
- > It occurs in a closed container.

4) Isobaric process

- Pressure of system remains constant, $\Delta P = 0$
- Reactions occurs in a open container with constant atmospheric pressure.

5) Reversible process

- It is process in which driving force and opposing force differs infinitesimally small to each other and process can be reverse by increasing opposing force.
- It is infinitely slow process and occurs in number of steps.
- At the end of each step their is an mechanical equilibrium of system with the surrounding.
- Driving force infinitesimally smaller than opposing force.
- Maximum work can be obtained in such proces.

• 4.3 Work and Heat

- Work means by which system exchange energy with surrounding.
- $ightharpoonup W = f \times d$,

Where, f = force, d = displacement of a body

- When a gas expands or contracts against external pressure is nothing but PV type of work.
- Heat is one the way by which system exchange energy with the surrounding.
- > +W = Work done by the surrounding on sytsem.
 - -W = Work done by the system on surrounding.
 - -q = Heat evolved by the system.
 - +q = Heat absorbed by the system.

4.4 Pressure-Volume type (P-V type) work at constant pressure

 \rightarrow W = $-P(V_2 - V_1) = -P(\Delta V)$

Where, P - Constant pressure, V_2 - Final volume of a gas, V_1 - Initial volume of gas.

 $> V_2 > V_1 \quad \Delta V + ve$,

-W i.e. work of expansion

 $> V_1 > V_2 \quad \Delta V - ve$

+W i.e. work of compression.

- ➤ W can be expressed in J, Lit-atm or cals.
 - 1 Lit-atm = 101.3 J 1 cal = 4.184 J

Work done in vaccum

Expansion of a gas in a vaccum without opposing force called as free expansion.

- In vaccum opposing force i.e. P = 0. Thus work done in vaccum is zero.
- Work done in cyclic process may be positive or negative depending upon heat absorbed or evolved by the system.
- Cyclic process is one in which system can be brought to its initial state again.

4.5 Maximum work can be obtained in isothermal and reversible process

- $ightharpoonup W_{max} = -2.303 \text{ nRT } log_{10} \frac{V_2}{V_1} \text{ or } \frac{P_1}{P_2}$
- $ightharpoonup W_{\text{max}} = -nRT \log_e \frac{V_2}{V_1}$
- \rightarrow n = no. of moles = $\frac{\text{Mass of substance}}{\text{Molar mass of substance}}$

• 4.6 Internal energy (v)

- Fixed or definite amount of energy associated in the system called as internal energy.
- It is sum of kinetic and potential energy. Electronic and nuclear also contribute internal energy.
- Absolute value cannot determine, in thermodynamics.
- $\rightarrow \Delta U = (U_2 U_1)$
 - U₁ = Internal energy of at initial state
 U₂ = Internal energy of final state
- Internal energy of system increases or decreases depending upon heat absorbed or evolved and workdone on the system or work done by the system.

4.7 First law of Thermodynamics

- First law of thermodynamics is nothing but modification of law of conservation of energy.
- The total energy of system and surrounding remains constant althrough it may changes one form to another forms.
- > Mathematical equation

$$\Delta U = q + W$$

Change in internal energy = Heat absorbed or evolved by the system + Work done

Total energy and mass of an isolated system remains constant (Modified form of first law of thermodynamics based on relation E = MC²)

Deductions

1) In isothermal process, $\Delta U = 0$

$$q = -W$$
 OR $W = -q$

2) In adiabatic process,

$$q = U$$
, i.e. $\Delta U = W$

3) In isochoric process,

$$\Delta V = 0$$
, i.e. $\Delta U = q_V$

4) In isobaric process, $\Delta U = q_p + W$

• 4.8 Enthalpy or Heat Content (H)

- Enthalpy is sum of internal energy and pressurevolume type of energy of the system.
- \rightarrow H = U + PV
- \rightarrow $\Delta H = \Delta U + P\Delta V$ P at constant pressure. It is enthalpy change equation.
- At constant volume or in isochoric process (for solids / liquid systems) ΔV = 0

$$\therefore \quad \Delta H = \Delta U \quad \text{or} \quad q_P = q_V$$

At constant pressure or in isobaric process for a gaseous system.

$$\Delta H = \Delta U + P\Delta V$$
 or $q_P = q_V + P\Delta V$

i.e. $\Delta H = q_P$.

 \rightarrow $\Delta H = \Delta U + \Delta nRT$

 $\Delta n = (No. of moles of gas products) - (No. of moles of gaseous reactants)$

- i) $\Delta n = 0$, $\Delta H = \Delta U$,
 - (a) Reaction in a closed container
 - (b) Reaction in solid or liquid phase
 - (c) For gaseous reaction n₁ = n₂.
- ii) $\Delta n = +ve, \Delta H > \Delta U$
- iii) $\Delta n = -ve$, $\Delta H < \Delta U$
- Work done in chemical reaction, W = -ΔnRT

$$\Delta n = (n_2 - n_1)$$

- If i) $n_2 > n_1$ W = -ve,
 - ii) $n_1 > n_2$ W = +ve
 - iii) $n_1 = n_2$ W = No work done.

4.9 Enthalpies in physical transformation

1) Enthalpy in fusion (ΔH_{fusion})

- It is enthalpy change in the fusion of 1 mole of solid without change in temperature at constant pressure.

2) Enthalpy of vapourisation (ΔH_{vap})

- It is enthalpy change in the vapourisation of 1 mole of liquid without change in temperature at constant pressure.
- $\Delta H_{\text{vap}} = \Delta H_{\text{Condensation}}$ $\Delta H = +ve \qquad \Delta H = -ve$ $(\text{Endothermic}) \qquad (\text{Exothermic})$ $\geq H_2O_{(l)} \longrightarrow H_2O_{(g)}$

$$AH_{\text{vap}} = 40.7 \text{ kJ mol}^{-1} \text{ at } 100^{\circ}\text{C}$$

$$H_2O_{(g)} \longrightarrow H_2O_{(l)}$$

$$\Delta H_{\text{con}} = -40.7 \text{ kJ mol}^{-1} \text{ at } 100^{\circ}\text{C}$$

3) Enthalpy of sublmination (ΔH_{sub})

The enthalpy of change when 1 mole of solid is directly converted into gas at constant temperature and pressure.

$$H_2O_{(s)} \longrightarrow H_2O_{(g)}$$

 $\Delta H_{sub} = 51.08 \text{ kJ mol}^{-1} \text{ at } 0^{\circ}\text{C}$
 $\Delta H_{sub} = \Delta H_{fusion} + \Delta H_{vap}$

- ➤ Sublimation is endothermic process.
- Enthalpy of atomic or molecular changes (ΔH_{ion}) or Enthalpy of ionization
- It is enthalpy change when an electron is removed from atom or ion to form 1 mole of gaseous atom or ion.

e.g.
$$Ca_{(g)} \longrightarrow Ca^{+}_{(g)} + e^{-}$$

 $\Delta H_{ion} = 590 \text{ kJ mol}^{-1} \text{ (Ist I.P.)}$
 $Ca_{(g)} \longrightarrow Ca^{+2}_{(g)} + e^{-}$
 $\Delta H_{ion} = 1150 \text{ kJ mol}^{-1} \text{ (IInd I.P.)}$

- > Ist I.P < IInd I.P. < IIIrd I.P. values.
 </p>
- Electron gain enthalpy (ΔH_{eg}) is a reverse of ionisation enthalpy.
- It is enthalpy change when 1 mole of gases atom accept electrons to form gaseous anion.

$$Cl_{(g)} + e^{-} \longrightarrow Cl^{-}$$

 $\Delta H_{eq} = -349 \text{ kJ mol}^{-1}.$

ΔH_{eg} highest value for Cl.

5) Enthalpy of atomisation (ΔHa)

It is enthalpy change in dissociation of 1 mole of gaseous molecule into gaseous atoms.

e.g.
$$Cl_{2(g)} \longrightarrow Cl_{(g)} + Cl_{(g)}$$

$$\Delta H_a = 242 \text{ kJ mol}^{-1}$$

$$CH_{4(g)} \longrightarrow C_{(s)} + 4H_{(g)}$$

 $\Delta H_a = 1600 \text{ kJ mol}^{-1}$

6) Enthalpy of solution $(\Delta_{sol}H)$

- It is enthalpy change when one mole of a substance is dissolved in a specific quantity of a solvent so as to form a particular concentration of solution at given temperature.
- \rightarrow $\Delta H_{sol} = \Delta H_{lattice\ enthalpy} + \Delta H_{hydration}$
- > e.g. ΔH_{sol} of NaCl = 4 kJ/mol. i.e. NaCl_(s) \rightarrow Na⁺_(aq) + Cl⁻_(aq)

 $\Delta H = 4 \text{ kJ/mol}$

- ΔH_{sol} involves solute-solute, solute-solvent and solvent-solvent interactions.
- \rightarrow ΔH_{sol} of KCl = +17.2 kJ mol⁻¹.

• 4.10 Thermochemistry

1) Heat of reaction or enthalpy of reaction (ΔH)

It is enthalpy of a reaction when number of moles of a balanced chemical reaction are reacted at their std. physical state and given temperature and pressure.

e.g.
$$aA + bB \rightleftharpoons cC + dD$$

 $\Delta H = \Sigma H_{products} - \Sigma H_{Reactants}$

- > ΔH may be positive or negative value.
- i) If ΔH is positive indicates $H_P > H_R$. Heat is absorbed by the system from surrounding. It is endothermic process.

e.g. $N_{2(g)} + 2O_{2(g)} \longrightarrow 2NO_{2(g)}$ $\Delta H = 66.4 \text{ kJ}$

 ii) If ΔH is negative value indicates H_P < H_R. Heat is evolved by the system to surrounding. It is exothermic process.

e.g. $2KClO_{3(s)} \longrightarrow 2KCl_{(s)} + 3O_{2(g)} \Delta H = -78 \text{ kJ}$

- Lower the enthalpy value that substance is more stable.
- iv) Standard conditions are :
 - (a) $1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa or N/M}^2$

- (b) 25°C or 298 K
- (c) 1 M concentration of the solution.

2) Standard heat of reaction (ΔH°)

It is enthalpy change accompanying the reaction when all substance involved in it are in their standard state.

3) Standard enthalpy of formation (AHof)

It is enthalpy change for a reaction when 1 mole of product or substance formed from their constituent elements at their standard state.

e.g.
$$C_{\text{(graphite)}} + 4H_{2(g)} \longrightarrow CH_{4(g)}$$

 $\Delta H^{o} = -74.8 \text{ kJ mol-1}.$

It may positive or negative value.

Standard enthalpy of combustion or Heat of combustion (ΔH°C)

- It is enthalpy change when one mole of substance completely combusted (with excess of oxygen) at their standard state.
- > ΔH°C always negative or exothermic reaction.
- Combustion of hydrocarbon always produce CO_{2(g)} and H₂O_(l). Combustion of CS₂ gives CO_{2(g)} and SO_{2(g)}

e.g.
$$CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)}$$

$$\Delta H_a = -283 \text{ kJ}$$

$$C_6H_{6(I)}+rac{15}{2}O_{2(g)}\longrightarrow 6CO_{2(g)}+3H_2O_{(I)}$$

$$\Delta H^o{}_C=-3267~{\rm kJ}$$

5) Bond energy or Bond enthalpy

- It is an average amount of energy (in kJ/mol) required to break a particular bond to form free atoms or radicals in polyatomic molecules calld as bond energy.
- For diatomic molecules, Bond formation = Bond dissociation energy with opposite sign. But Bond dissociation energy is always positive. Bond formation may be positive or negative.
- > For polyatomic molecule, average bond energy

 $= \frac{\text{Total bond energy}}{\text{No. of bonds in molecule}}$

$$\rightarrow$$
 $\Delta H^{o} = \Sigma H^{0}_{(Reactant bonds)} - \Sigma H^{0}_{(Product bonds)}$

Hess's law of constant heat symmation

- Enthalpy change during a chemical reaction remains constant whether it involves one step or no. of steps.
- ➤ i.e. Enthalpy change during chemical reaction is independent to the path between initial and final state.
- It is an application of law of conservation of energy and state function.
- > It is useful to calculated ΔH_C , ΔH_f , ΔH_R , ΔH_n . Heat of reaction which cannot calculate directly. Thermochemical equation can be added, subtracted, multiplied or divide.

$$\Delta H_{Total} = \Delta H_1 + \Delta H_2 + \Delta H_3 \dots$$

- ➤ e.g.
- (I) $CH_{4(g)} + 2Cl_{2(g)} \rightarrow CH_2Cl_{2(g)} + 2HCl_{(g)}$ $\Delta H^{\circ} = -202.3 \text{ kJ}$
- $(II) \begin{array}{c} CH_{4(g)} + Cl_{2(g)} \longrightarrow CH_{3}Cl_{(g)} + HCl_{(g)} \\ \qquad \qquad \qquad \Delta H^{o}{}_{1} = -98.3 \text{ kJ} \\ CH_{3}Cl_{(g)} + Cl_{2(g)} \longrightarrow CH_{2}Cl_{2(g)} + HCl_{(g)} \\ \qquad \qquad \qquad \Delta H^{o}{}_{2} = -104.01 \text{ kJ} \\ \hline CH_{4(g)} + 2Cl_{2(g)} \longrightarrow CH_{2}Cl_{2(g)} + 2HCl_{(g)} \end{array}$

Thermochemical equation

It is a balanced chemical equation which gives enthalpy change, physical states and no. of moles of each component of the reaction.

 $\Delta H^{o} = \Delta H^{o}_{1} + \Delta H^{o}_{2} = -202.3 \text{ kJ}$

- Equation must be balanced form of number of moles of reactants and products.
- ΔH° represented right hand side with proper sign.
 Negative sign indicates exothermic and positive sign indicates endothermic reactions.
- ➤ Physical states are mention, like (s), (l), (g), (aq.) etc.
- ightharpoonup If reaction reverse sign of ΔH^o also reverses.
- ightharpoonup Enthalpy of elements at their std. state consider as zero value. e.g. Enthalpy of $Na_{(s)}=0$
- > If reaction is multiple or divide by suitable value, same factor used for ΔH^o value.

e.g.
$$C_2H_{2(g)}+\frac{5}{2}O_{2(g)}\longrightarrow 2CO_{2(g)}+2H_2O_{(I)}$$

$$\Delta H^o=-1300~\text{kJ}$$

4.11 Spontaneous process (Irreversible process)

- Spontaneous process is a process which occurs without the external influence or which takes place with its own occurred.
- Examples of spontaneous process
 - i) Flow of water from higher level to lower level.
 - ii) Heat flows from hotter body to cold body.
 - iii) KCl solid spontaneous in water.
 - iv) Neutralisation of acid and base.
 - Such process cannot reverse without external force.
- All the natural (spontaneous) processes occurs in a direction till equilibrium is reached.
- In spontaneous process energy decreases i.e. exothermic process. But endothermic processes also spontaneous in nature.
- e.g. $KOH_{(aq)} + HNO_{3(aq)} \rightarrow KNO_3 + H_2O$ $\Delta H = -57 \text{ kJ}$

ice
$$\xrightarrow{above}$$
 $H_2O(I)$ $\Delta H = 6.01 \text{ kJ mol}^{-1}$.

$$NaCl_{(s)} + aq. \longrightarrow Na^+Cl_{(aq.)}^- \Delta H = 3.9 \text{ kJ mol}^{-1}.$$

- Entropy is disorder in a reaction or degree of randomness of the system.
- > Disorder increases entropy increases.
- In solid atoms or molecules are arranged orderly hence entropy is lowest. In liquid entropy increases and highest in gaseous state.
- In spontaneous process disorder increases then entropy change is positive.

$$\Rightarrow \Delta S = \frac{q_{reversible}}{T}$$

- ➤ It is expressed in JK⁻¹.
- Entropy is a state function and depends on initial and final state of the system.

$$\Delta S = (S_2 - S_1)$$

• Second law of Thermodynamics

- The total entropy of system and surrounding (i.e. universe) always increases in a spontaneous process.
 OR
 - Entropy of universe increases in all spontaneous process.
- $\rightarrow \Delta S_{universe} = \Delta S_{Total} = \Delta S_{System} + \Delta S_{Surrounding} > 0$
- $\Rightarrow \Delta S_{Total} > 0$ Spontaneous process.
 - $\Delta S_{Total} < 0$ Non-spontaneous process.

$$\Delta S_{Total} = 0$$
 Process is at equilibrium.

Gibb's energy: G = H - TS Where G - Gibb's energy, H - Enthalpy, S - Entropy and T - Temperature. All are the state functions.

$$\Delta G = \Delta H - T \Delta S$$

- \rightarrow $\Delta G = -T\Delta S_{Total}$
- For spontaneous process, ΔS_{Total} > 0, then ΔG < 0
- For non-spontaneous process,
 ΔS_{Total} < 0, then ΔG > 0
- iii) At equilibrium,

$$\Delta S_{Total} = 0$$
, then $\Delta G = 0$

At equilibrium,

$$\Delta G = 0$$
,

Thus, $\Delta H = T\Delta S$ OR

$$T = \frac{\Delta H}{\Delta S}$$

At standard state, $\Delta G^{\circ} = -RT \ln K \text{ or, } \Delta G^{\circ} = -2.303 \text{ RT } \log_{10}K$ Where, K is equilibrium constant.

ΔH	AS	ΔG	Nature of reaction
-ve	+ve	-ve	Spontaneous at all temperature
+ve	-ve	-	Non-spontaneous at all temperature
-ve	-ve	-ve	Spontaneous at low temperature
+ve	+ve	+ve	Non-spontaneous at low temperature
-ve	-ve	+ve	Non-spontaneous at high temperature
+ve	+ve	-ve	Spontaneous at high temperature

• Third law of thermodynamics

The entropy of a pure and perfect crystalline substance is zero at absolute zero temperature.

$$\rightarrow \Delta S = S_T - S_0 = \int_0^T \frac{C_P}{T} dt$$

Where, S_T - absolute entropy at T K, S_0 - absolute entropy at 0 K, C_P - heat capacity of a constant pressure.

- The absolute entropy of a 1 mole of pure substance at 1 atm. pressure and 25°C is called as standard molar entropy (S⁰)
- For a reaction, standard entropy change ΔS° can be calculated

$$aA + bB \rightleftharpoons cC + dD$$

$$\Delta S^{o} = \Sigma S^{0}_{(Products)} - \Sigma S^{0}_{(Reactants)}$$

$$\Delta S^{o} = (c S_{C}^{0} + d S_{D}^{0}) - (a S_{A}^{0} + b S_{B}^{0})$$