# **Biomolecules**

# **EXERCISE [PAGES 320 - 321]**

## **Exercise | Q 1.1 | Page 320**

## Select the most correct choice.

CH<sub>2</sub>OH-CO-(CHOH)<sub>4</sub> -CH<sub>2</sub>OH is an example of

- 1. Aldohexose
- 2. Aldoheptose
- 3. Ketotetrose
- 4. Ketoheptose

Solution: Ketoheptose

**Exercise | Q 1.2 | Page 320** 

### Select the most correct choice.

Open chain formula of glucose does not contain

- 1. formyl group
- 2. anomeric hydroxyl group
- 3. primary hydroxyl group
- 4. secondary hydroxyl group

Solution: anomeric hydroxyl group

## **Exercise | Q 1.3 | Page 320**

### Select the most correct choice.

Which of the following does not apply to CH<sub>2</sub>NH<sub>2</sub> – COOH?

- 1. Neutral amino acid
- 2. L Amino acid
- 3. Exists as zwitter ion
- 4. Natural amino acid

Solution: L - Amino acid

## **Exercise | Q 1.4 | Page 320**

Select the most correct choice.

Tryptophan is called essential amino acid because

- 1. it contains aromatic nucleus
- 2. it is present in all the human proteins
- 3. it cannot be synthesised by human body
- 4. it is essential constituent of enzymes

**Solution:** it cannot be synthesised by human body

**Exercise | Q 1.5 | Page 320** 

#### Select the most correct choice.

A disulphide link gives rise to the following structure of a protein.

- 1. Primary
- 2. Secondary
- 3. Tertiary
- 4. Quaternary

**Solution:** Tertiary

**Exercise | Q 1.6 | Page 320** 

Select the most correct choice.

RNA has \_\_\_\_\_.

- 1. A U base pairing
- 2. P-S-P-S backbone
- 3. double helix
- 4. G C base pairing

Solution: RNA has A - U base pairing.

**Exercise | Q 2.1 | Page 320** 

### Give scientific reasons:

The disaccharide sucrose gives negative Tollens test while the disaccharide maltose gives a positive Tollens test.

#### Solution:

1. The structure of sucrose contains glycosidic linkage between C-1 of  $\alpha$ -glucose and C-2 of  $\beta$ -fructose.

- 2. Since the potential aldehyde and ketone groups of both the monosaccharide units are involved in the formation of the glycosidic bond (i.e.,  $\alpha$ ,  $\beta$ -1,2- glycosidic bond), sucrose is a non-reducing sugar and gives negative Tollen's test.
- 3. The glycosidic bond in maltose is in between C-1 of one glucose ring and C-4 of the other (i.e., α -1,4-glycosidic linkage).
- 4. The hemiacetal group at C-1 of the second ring is not involved in the glycosidic linkage. Hence, maltose is a reducing sugar and gives positive Tollen's test.

## **Exercise | Q 2.2 | Page 320**

### Give scientific reasons:

On complete hydrolysis DNA gives equimolar quantities of adenine and thymine.

#### Solution:

- 1. Both the strands of DNA double helix are complementary to each other.
- 2. That is a number of bases on each strand are equal and complementary to each other.
- 3. As adenine pairs with thymine; the number of adenine bases on one strand and thymine on another are equal in number.

Thus, on complete hydrolysis DNA gives equimolar quantities of adenine and thymine.

## **Exercise | Q 2.3 | Page 320**

#### Give scientific reasons:

α-Amino acids have high melting points compared to the corresponding amines or carboxylic acids of comparable molecular mass.

#### Solution:

- 1. This is due to the peculiar structure called zwitter ion structure of  $\alpha$  -amino acids.
- 2. α-Amino acid molecule contains both acidic carboxyl (–COOH) group as well as basic amino (–NH<sub>2</sub>) group.
- 3. Proton transfer from the acidic group to the basic group of amino acid forms a salt, which is a dipolar ion called zwitter ion.

Thus,  $\alpha$ -amino acids have high melting points compared to the corresponding amines or carboxylic acids of comparable molecular mass.

## **Exercise | Q 2.4 | Page 320**

## Give scientific reasons:

Hydrolysis of sucrose is called inversion.

### Solution:

1) Sucrose (C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>) is dextrorotatory (+66.5°). On hydrolysis with dilute acid or an enzyme called invertase, sucrose gives equimolar mixture of D-(+)-glucose and D-(–)-fructose.

$$\begin{array}{c} C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 \\ \xrightarrow{\Delta} D_{-(+)\text{-Glucose}} + C_6H_{12}O_6 \end{array}$$

2) Since the laevorotation of fructose (–92.4°) is larger than the dextrorotation of glucose (+52.7°), the hydrolysis product has net laevorotation.

Hence, hydrolysis of sucrose is also called inversion of sucrose.

## **Exercise | Q 2.5 | Page 320**

### Give scientific reasons:

On boiling egg albumin becomes opaque white.

#### Solution:

- 1. Proteins when subjected to high temperature undergo disruption of noncovalent interactions which are responsible for the specific shape of protein. That is, it undergoes denaturation.
- 2. Denaturation disturbs the specific structure of egg albumin which causes a change in the physical properties.

Thus, on boiling egg albumin becomes opaque white.

**Exercise | Q 3.1 | Page 321** 

The following statement applies to DNA only, some to RNA only, and some to both. Label them accordingly.

| The polynucleotide is double strande  | he  | <b>(</b> |
|---------------------------------------|-----|----------|
| The polyhucieolide is double strained | zu. | \        |

#### Solution:

The polynucleotide is double-stranded. (DNA)

## **Exercise | Q 3.1 | Page 321**

The following statement applies to DNA only, some to RNA only, and some to both. Label them accordingly.

The polynucleotide contains uracil. (\_\_\_\_\_)

## Solution:

The polynucleotide contains uracil. (RNA)

**Exercise | Q 3.1 | Page 321** 

| The following state both. Label them The polynucleotide Solution: | accor   | dingly  | <b>7.</b> |          |              | ome to       | RNA          | only, a  | nd son   | ne to    |   |    |  |  |
|-------------------------------------------------------------------|---------|---------|-----------|----------|--------------|--------------|--------------|----------|----------|----------|---|----|--|--|
| The polynucleotide contains D-ribose. (RNA)                       |         |         |           |          |              |              |              |          |          |          |   |    |  |  |
| Exercise   Q 3.1                                                  | Page    | 321     |           |          |              |              |              |          |          |          |   |    |  |  |
| The following state both. Label them The polynucleotide Solution: | accor   | dingly  | <b>'.</b> |          |              | ome to       | RNA          | only, a  | nd son   | ne to    |   |    |  |  |
| The polynucleotid                                                 | e conta | ains gu | anine.    | (Both    | DNA a        | nd RN        | IA)          |          |          |          |   |    |  |  |
| Exercise   Q 3.2                                                  | Page    | 321     |           |          |              |              |              |          |          |          |   |    |  |  |
| Write the sequen                                                  | ce of t | he co   | mplem     | nentary  | stran        | d for t      | he foll      | owing    | segme    | nt of a  |   |    |  |  |
| DNA molecule.                                                     |         |         |           |          |              |              |              |          |          |          |   |    |  |  |
| 5' - CGTTTAAG -                                                   | 3'      |         |           |          |              |              |              |          |          |          |   |    |  |  |
| Solution:                                                         |         |         |           |          |              |              |              |          |          |          |   |    |  |  |
| Original strand                                                   | 5'      | -       | С         | G        | Т            | Т            | Т            | А        | А        | G        | - | 3' |  |  |
|                                                                   |         |         | <b>\</b>  | <b>↓</b> | $\leftarrow$ | $\downarrow$ | $\downarrow$ | <b>↓</b> | <b>\</b> | <b>\</b> |   |    |  |  |
| Complementary strand                                              | 3'      | -       | G         | С        | Α            | A            | Α            | Т        | Т        | С        | - | 5' |  |  |
| Exercise   Q 3.2                                                  | Page    | 321     |           |          |              |              |              |          |          |          |   |    |  |  |

Write the sequence of the complementary strand for the following segment of a

G

Τ

Α

Т

ATACGGC

3'

DNA molecule.

Original strand

Solution:

5' - CCGGTTAATACGGC - 3'

5'

С

С

G

|                      |    |   | <b>1</b> | <b>1</b> | <b>\</b> | <b>\</b> | <b>1</b> | <b>\</b> | <b>\</b> | $\downarrow$ | $\downarrow$ | $\downarrow$ | <b>\</b> | <b>\</b> | <b>\</b> | $\downarrow$ |   |    |
|----------------------|----|---|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|--------------|----------|----------|----------|--------------|---|----|
| Complementary strand | 3' | - | G        | G        | С        | С        | Α        | Α        | Т        | Т            | A            | Т            | G        | С        | С        | G            | 1 | 5' |

## Exercise | Q 3.3 | Page 321

Write the names and schematic representations of all the possible dipeptides formed from alanine, glycine and tyrosine.

### Solution:

Glycylglycine: Gly-Gly
Alanylalanine: Ala-Ala
Tyrosyltyrosine: Tyr-Tyr
Glycylalanine: Gly-Ala
Alanylglycine: Ala-Gly
Glycyltyrosine: Gly-Tyr
Tyrosylglycine: Tyr-Gly
Tyrosylalanine: Tyr-Ala
Alanyltyrosine: Ala-Tyr

## **Exercise | Q 3.4 | Page 321**

Give two evidences for presence of formyl group in glucose.

### Solution:

- 1. Glucose gets oxidized to a six-carbon monocarboxylic acid called gluconic acid on reaction with bromine water which is a mild oxidizing agent. Thus, the carbonyl group in glucose is in the form of formyl (–CHO).
- 2. Hemiacetal group of glucopyranose structure is a potential aldehyde (formyl) group. It imparts reducing properties to glucose. Thus, glucose gives positive Tollen's test or Fehling test.

## **Exercise | Q 4.1 | Page 321**

## Draw a neat diagram for the following:

Haworth formula of glucopyranose

## Solution:

# **Exercise | Q 4.2 | Page 321**

# Draw a neat diagram for the following:

Zwitter ion

## **Solution:**

# **Exercise | Q 4.3 | Page 321**

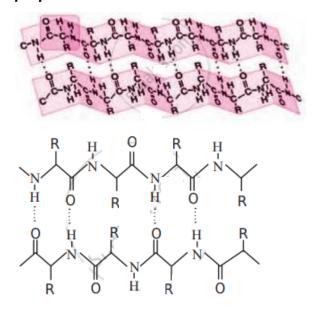
# Draw a neat diagram for the following:

Haworth formula of maltose

## Solution:

# **Exercise | Q 4.4 | Page 321**

# Draw a neat diagram for the following:


Secondary structure of protein

# Solution:

# ∝ - Helix:

Backbone of α-Helix

# β - pleated sheet



# **Exercise | Q 4.6 | Page 321**

# Draw a neat diagram for the following:

dCMP

# **Solution:**

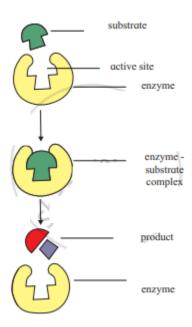
# **Exercise | Q 4.7 | Page 321**

# Draw a neat diagram for the following:

One purine base from nucleic acid

## Solution:

## Adenine A:


# **Guanine G:**

# **Exercise | Q 4.8 | Page 321**

# Draw a neat diagram for the following:

Enzyme catalysis

## Solution:

